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/ Abstract

The applicability of adaptive array concepts to continuous aperture
antennas was studied and appropriate aperture field distributions for
pattern nulling were found from them. The adaptive array weights were
found to be useful as discrete points in a continuous distribution. This
distribution could then be used in an aperture integration scheme to
produce a nulled pattern. |

Also studied was the use of geometrical optics to calculate the
aperture fleld distribation of an arbltrarily shaped reflector. Under
some restrictions, geometrical optics can provide a useful approximation.
Constructing the aperture field of a reflector defined by a discrete
grid of points using a numerical ray tracing scheme was also investigated.
Certain numerical problems were identified.

Finally, an attempt was made to implement the nulled pattern by a
well known beamshaping method based on geometrical optics principles.
This technique was found to be inadequate. More promising techniques
for implementing the aperture distributions were suggested but not

pursued in this work.
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42 ':ﬁ% I Introduction

j The Problem

::i Many systems which use antennas must contend with the possibility of

Jamning by hostile transmitters. System designers often attempt to deal
' with noise by devising signal processing schemes to improve the signal-to-
" noise ratio of the system. This may be the only way for most types of
noise, such as thermal noise in the receiver. However, one often has a
Jittle more information about hostile jammers. Using this information

presents the system designer with yet another tool for raising the signal-

KL

to-noise ratio of his creation.
Thoughts 1ike these have led to the development of adaptive antenna

systems. Such an antenna modifies its radiation pattern according to

» a some predetermined criterion through feedback control (Reference 1). What
Sﬁ does this accomplish? Basically, an adaptive antenna improves the signal-
2:« to-noise ratio of the system it serves by rejecting interference. Some
adaptive antennas use knowledge of the desired signal to track that signal
j‘;q and reject all else. If instead, one has knowledge of the spatial distri-
?‘_: bution of noise sources ( Ref 1), he might configure the adaptive antenna

to place pattern nulls on those particular directions. Either way, one

seeks to maximize the signal-to-noise ratio by rejecting the interference

with the antenna itself.

| (RS

To date, adaptive antenna designers have confined their attention

primarily to array type antenna (Reference 1). Controlling the radiation

oty Ay A

pattern of an array antenna is easily accomplished by varying the

amplitude and phase of the input signals which drive each array element
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(Reference 1). Since such control is strictly electronic, the system does
not require mechanical assistance; hence, the interest in array antennas.
To control the radiation pattern of a reflector antenna with a continuous
aperture, one would have to devise some scheme to distort the reflector
from its equilibrium shape in a well controlled manner.

Such a scheme requires as a foundation, some knowledge of which
reflector geometries are capable of generating radiation pattern nulls
in predetermined locations. One must know if such shapes exist and if
these shapes are physically realized. Clearly, a reflector with a Toop
in it simply will not do. This work attempts to address the problem of
finding shapes that place nulls in the radiation pattern at specified
locations.

Only the simplest techniques were used in this preliminary work.
Principles of geometrical optics were applied to reflector surfaces to
generate approximate aperture field distributions. Geometrical optics
assumes that reflector dimensions are much greater than the wavelength
(Ref 12:454 ). Furthermore, the radius of curvature of the reflector
surface at any point must also remain much greater than the wavelength
(Ref 9: 123 ), This al1 means that consideration here is confined to
large reflectors that are not too "bumpyf. Once the aperture distribution
was determined, simplified aperture integration generated the radiation
pattern. These approximations mean that the results are really only
qualitative; but they do give some idea of the location of nulls in the
radiation pattern, at least for angles not far from boresight. The analyses
were also limited to the two dimensional case, in the interest of simplicity.

In the work that follows, a brief description of Applebaum adaptive

array antenna concepts will be presented in order to familiarize the




;&é reader with the adaptive array ideas which are later applied to apertures.
.%f {{25 In Section II, the aperture integration technique used in this work is
» ALY

described along with proposed aperture field distributions that generate

ﬂﬁ? pattern nulls. Section III deals with geometrical optics as applied to
:¥§ large reflectors. The algorithm used to trace the ray path from feed

lxil to aperture is presented also. Section IV attempts to implement a nulled
%ig pattern using well known beam-shaping techniques also based on geometrical
ii& optics. Section V attempts to find reflectors which implement the aperture
jA. distributions found in Section II. A summary of the results rounds out
?3; this document.

N Possible Antenna for Reflector Distortion

12}‘ At this point, the reader might wonder about the feasibility of a
ji:ﬁ reflector that changes shape after construction is completed. Jeffrey H.
} @ Lang, et al have proposed an antenna which might offer a possible solution
,\S to this problem. They have suggested a reflector constructed from a thin
:.“ membrane whose shape is controlled electronically (Ref 5,6,7 ).

Ko Figure 1.1 illustrates the Lang concept (Ref 5: 655 ). An electron
ﬁif‘ beam controls the shape of the reflector (Ref 5: 655 ). Referring to

??? Figure 1.1, the command surface is pulled into a roughly parabolic shape

& by guy wires and the reflector is pulled toward the command surface by
;?; application of a bias potential resulting in-an approximately parabolic
;ég reflector (Ref 5: 655). The computer uses optical measurements to

- determine if the reflector shape meets tolerances. If not, it instructs
f,‘ the electron beam to scan the command surface in such a way that the modi-
?ZQ fied charge distribution and resulting electrostatic force refine the

?%? - reflector shape (Ref 6: 992). This results in a parabola which meets
‘Ei R some predetermined tolerance.

:';;;3 3
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Fig 1-1. Lang Concept

If such an antenna were perfected, it might prove useful in the
reflector distortion problem. Instead of warping the membrane into a
parabolic shape, perhaps the charge distribution could be altered to
form null generating shapes. Such a scheme would be superior to purely
mechanical means especially for large reflectors. J. H. Lang, et al
envision reflectors up one kilometer in diameter (Ref 7 ). A mechanical
scheme for such an antenna must bé clever indeed. However, an investi-
gation of the electrostatic reflector's applicability to the nulling
problem is beyond the scope of this work and will not be considered

further.

Applebaum Adaptive Array

Applebaum devised an adaptive array scheme which maximized the

single-to-noise ratio (Ref 1). It accomplishes this by placing nulls

-t ™.

Wik,
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in the radiation pattern on the angular positions of any jamming transmitter.
Applebaum assumed that the angles of jammers was known when he developed
his control law for array weights.

Figure 1.2 (Ref 1: 585) provides a starting point for the description
of Applebaum's array. The array in question has K elements. The desired
input signal at element i 1is X; and the undesirable noise input at element
iis ny. Actually, these are the complex envelopes of the desired signal
. weighted by

i
is the sum of the n;

and noise. The output desired signal Ve is the sum of the x
the appropriate W The output noise signal n
similarly weighted by the W
One knows from probability and communication theory that Pij =
. ["i*"j] gives the covariance of noise signals n, and nj. In developing
his array concept, Applebaum assumed that the pjj are known. They depend
only on receiver noise and the angular distribution of the noise sources
(Ref 1: 585). He then defined the noise covariance matrix as M = [pij]
where i and j both vary from one to K (Ref 1: 586 ).
Applebaum further assumed that the desired signals were narrowband.
In general, the interelement phase shift in an array is frequency
dependent (Reference 1). However, if the desired signal has narrow-
bandwith, the interelement phase shift is essentially constant and
depends only on interelement spacing and angle of incidence. This enabled
Applebaum to write the desired signals Xy as X; = asy where o is the com-
plex envelope of the desired signal incident on the array and the S5 is
a phase factor depending on angle of incidence, interelement spacing, and
element pattern. Assuming isotropic elements, the total phase shift at

the 1th element referenced to the first element is gL(i-1) where 8 = 2n/x

and L = d sin @ as shown in Figure 1.3. Therefore, the s; are given by
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SN (Ref 1: 586):
S = exp (jdi sin o) (1-1)

f With these definitions in hand, Applebaum determined that the

':‘ optimum weights which maximized signal-to-noise ratio are given by

' (Ref 1: 586 ):

T3 MW = S* (1-2)

where M is the noise covariance matrix defined previously, W is the vector

0 of array weights, S* is the vector of Si* with S'i give by Eq ( 1-1 ).

L}
Y,

The star denotes the complex conjugate. The u is an arbitrary constant. |

The reader should refer to Appendix A for verification of this result.
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EZ Applebaum then generalized this result. If no noise is incident,
Zl then the noise covariance matrix reflects only receiver noise which is
) equal in all channels and uncorrelated between channels. This defines
E the quiescent noise covariance matrix as Mq = °qu where °q is quiescent.
:.'
o noise power and Ik ijs @ K x K identity matrix (Ref 1: 589). Since
. Mq'1 = 31— I » the quiescent weights are wq = uMq'IS = -pl‘- S*. Thus Nq and
N P
o S* are scalar multiples and S = f Nq* ‘s a measure of the quiescent
- weights and hence quiescent pattern (Reference 1). In fact, S corresponds
to uniform quiescent weights. If one wants different quiescent weights,
o}
> he merely defines T = —uﬂ wq* with the new weights and using MW = MT* comes
3 up with the modified control Taw (Ref 1: 588 ):
SR Md o= MW 1-
A a"q (1-3)
& 7
ah

---------------
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This accepts some degredation of optimal signal-to-noise ratio in order
to achieve control over the quiescent pattern (Refel: 587 ).

According to Applebaum, Equation (1-3 ) gives weights that place a
pattern null on a jammer. To illustrate this, and see what the array
weights are, consider a K element array whose mainbeam is angle es from

mechanical boresight. The quiescent noise covariance matrix is

Mq = quk as stated before. The quiescent weights are given by:
A 2y —
2, e-JBd sin o
wq = a3 e-jZBd sin es (1_4)
3 e-j(K-l)Bd sin 0

The a; are the real number amplitude weights and if the a; are all equal,
the quiescent pattern is just the familiar sin(Kx)/sin(x) (Ref 1: 589 ).

From fundamental antenna theory, the quiescent pattern is (Ref 1: 589 ):

K st . .
Fq(e) -1 a, e3(1-1)sd(s1n e=-sin es) (1-5)

i=1

‘where © is the angle of observation referenced to the mechanical boresight.

Vector notation greatly simplifies the task. Therefore, defining the

vector B for the sake of convenience as (Ref 1: 589 ):

1
ejsd sin o

ejZBd Sin 0 (1'6)

ej(K-i)Bd sin o

AT AN T T < A o A T AR LSLER T e T T TN e e
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:{2 permits the quiescent radiation pattern to be rewritten as:
AN o)
R Fo(e) = 8T, (1-7)
o With this preliminary out of the way, one must now seek an expression
$f\
e for W. From Eq (1-3) and Mq = o I,, the W is (Ref 1: 590 ):
\:.* _1

-1 = -
N W qu Hq (1-8)
"N One must now find the noise covariance matrix and hence M1,
A
};Z Define the jamming signal in the first array element as J(t). Then
‘-“' the jamming signal in the 1th element is Ji(t) = J(t) exp [j(i-1)8d sin 6j].
ox The covariance between Ji(t) and Jk(t) is:
g
¥
?% £ [Ji*(t)‘]k(t)] - E[J*(t)e"]h'l)sd sin OJJ(t)eJ(K-l)Bd sin 833
. il :

| a E[J*(t)J(t)] e j('l k)Bd sin 6j
,’: = 0. e"j('i-k)ﬂd sin ej (1_9)
N, @ J

X/ Consequently, the covariance matrix of the j'amning signal is MJ. =

4‘_“
?j 6j(exp[-j(i-k)ed sin©j]) for i and k from one to K. Ms is Hermitian with
- all elements on the same diagonal equal. Its simple structure permits a
¥

f.ié further modification (Ref 1: 590 ). Defining the matrix (Ref 1: 590 ):
[
'-:.‘4
Ry —

— 1
2:: gJfd sinej
-':::-;: : e,j(k-l)ed sin o]
S"-" and also defining U as a KxK matrix of ones leads to (Ref 1: 590 ):
SR - -
RS M = o H*UH (1-11)
\f,,"-‘

’o

ot .w...,.'_’. -...’_n."‘_-.._’,.-: ............ AR RO Nl
1 3 .

..........................................




Since the receiver and jammer noise are uncorrelated, the total noise

SN covariance matrix is (Ref 1: 590):
e

g = . = H¥* -

!t§2 M= M+ M=o T+ o HeUH (1-12)

%2

ot Applebaum gives ML as (Ref 1: 590 ):

. - P

N W=l - (—=l) Hem) - (1-13)
Dq Dq Dj

RO Applying this expression to Eq (1-8) leads to the following equation
defining the weights (Ref 1: 590 ):

o]
£ W= W - (—l—) HrUHW (1-14)
Some further simplification is in order ( Ref 1: 590):

1%3* 3

oy s 2
o ?S 2
N HW = a e

elad (sin o - sin es)
jed (sin oj - sin os) (1-15)

1 ejik-1) gd (sin oj - sin es)

JA."J .
. UHMq Fq(e:j) | (1-16)

¢ Yy \l

1 [l
N
% )

10




Lt . I
S SETION e-J8d sin o]

v HUH = Fo(03) e~J28d sin 6j (1-17)

N3 *

e-j(K-l) 8d sin oJ

’% Defining the vector in Eq (1-17) as 83 allows one to write Eq (1-17) as
2% (Ref 1: 590 ):

2751

L % = F i} B* -
R H*UHN, = F_ (o) B} (1-18)

o Substituting Eq (1-18) into Eq (1-14) results in (Ref 1: 590 ):

2 Pq

To get the nulled pattern, one multiplies Eq (1-19) by B where B is
defined in Eq (1- 6) (Ref 1: 590 ):

P
R W= W _ (—*‘jKTj) Fo(03)83 (1-19)

Ve
o
P

Fo) = F (o) - ('p_:jKTj) Fy(e)8"8y (1-20)

q

BTB3 =1+ ejsd (sin e - sin ¢j) | ... + ej(K-l)Bd (sin & - sin oj)

Nt CRCRERLR
PN

K
L e
K=1

j(k-1)gd (sin e - sin oj)

E Ay
]

(1-21)

3 3 [edd (sin o - sin 0d)q(K-1)
A k=1 -

35 Eq (1-21) is a geometrical progression and simplifies to:

d
3733 = eJ(K-1) %? (sin o - sin oj) 51"[K%T (sin @ - sin 0j)] (1-22)

ot sin[%? (sin & - sin 8j)]
Py
- ’\.::':'
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N3
.-.l
N 0
2&2 Sfnce ﬁ;—-;iis-) Fq(ej) is just a number, the second term in Eq (1-20)
2| q J
Y
*5h; 3&53 is a sin(Kx)/sin(x) pattern with its main beam at oj (Ref 1: 590 ).
- This comprises the nulling mechanism.
o3
;;3 Eqs (1-20) and (1-22) provide an expression for a pattern with a
f;: null at 6j. However, the expression for the weights should be broken
" } down for use in Section II. Using Eq (1-14), the 1th weight is:
) p K
NS . _=b— ; o-ili-k)ed sin oj
N Wy = (W) - pq*key w1 € ()i
= P
o i . . K
Ny = (W), - 5.7 e-jsd1 sin 6j ; [ejsd sin ej]k (W) (1-23)
o Q1 "q =1 q’k
g Substituting (Nq)i = 1 into Eq (1-23) for uniform quiescent weighting
N gives:
b )
: [¢] . s
ke W, =1~ J _ o-Jgdi sin o] ; [erd sin OJ]k (1-24)
@ i o +Ko z
< q J K=1
;i}
Z;} Employing geometrical progression and some algebra gives:
;_‘ p
_ p;  sin (KEF sin o§) d
i . E
, <1 j(14K-21) sin o] -
‘,‘,‘:* Wy = 1-0o*Ko5  cin (-%—_,‘1 sin oj) © (1-25)
N
o
: Eq (1-25) will figure prominently in Section 11 while Eqs (1-20) and
;23 (1-22) will be important in Section IV.
Tod
Tl
3
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I1 Pattern Calculations

Aperture Integration

A1l the radiation patterns in this work were computed by integrating
an aperture electric field distribution over an aperture plane. For
simplicity, calculations involved only two dimensional geometrics; there-
fore, only one dimensional, single integrations were involved.

The expression for radiation pattern follows from the following

definition for an electric vector potential:

E=-VxF (2-1)

where E is electric field and F is electric vector potential. The F
@ solves a vector wave equation with a magnetic current source term
e ( Ref 4: 56 ). It is given by ( Ref 4: 56 ):

-jeR 4

F= W) g5 ds (2-2)

where
R = |77
T = Observation Point Position Vector.
?1 = Source Point Position Vector.
ﬁs('Fl) = Magnetic Surface Current.

- ¢ = Surface on which ﬁs(?l) exists.

The far-field approximation for this is (Ref 12: 379):

-Jsr A =1
v F- [ R (F) BT gs! (2-3)
)

13
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is where r is the spherical coordinate radial unit vector and r is the radial
"‘:\: @‘} distance to the observation point.

) In aperture integration problems, the magnetic surface current density
“g on surface I is an equivalent current derived from the electric field on
e

- the surface (Ref 12:376 ). The expression is (Ref 12:376 ):
\ ﬁs = Exn (2-4)
g ,

1% where E is the electric field on surface I and n is the outward normal

- unit vector to I. If one selects a planar I, then n remains constant on

‘ the surface of integration. Substituting Eq (2-4) into Eq (2-3) yields
2 Ref 12: 382):

‘r -jBr A _1 N

: Ta %F [.j; T ol8rer dsll X n (2-5)

)

b The aperture surface £ is often chosen to 1ie in the xy-plane. The

, @ aperture electric field Ea is also assumed to be everywhere tangential

:i to the aperture plane ( Ref 12:381 ). Under these conditions, n is simply
“ﬁ the z-directed unit vector and ds1 is just dxld,y1 where the primes refer

to points in the aperture plane. For convenience, the bracketed term

in Eq (2-5) will be called P ( Ref 12:382).

Since fa has only x and y components, the P vector has only x and y

PR
e
Sl i

components. Identifying these components as Px and Py and substituting
into Eq (2-5) results in ( Ref 12:382):

| '.\"' ‘A\.l e i

Ry

F=gsx (Pyx-Pxy) (2-6)
’;‘: ~ L)

"{'i where x and y are the x and y directed unit vectors respectively.

z Given the magnetic vector potential, defined by H = ¥ x &, the far
RS zone electric field is T = juuR less the r component, where u is radian
v v ;
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frequency and u is the magnetic permeability ( ref 12: 25). Since

F is the dual of A, the far zone H field is simply H = jueF less its

r component, where € is the permittivity ( Ref 12:379). The far zone

fields exhibit plane wave behavior; therefore, E -ylf—- Axrs=

-jm\/;'F X r Since m‘/ es= an/ where ¢ is the speed of 1ight, we
. IA c. »

have uv,u = 2“/A = g, This gives the far zone electric field as
(Ref 12: 383):

T = jerxF ' (2-7)

Substftuting Eq (2-6) into Eq (2-7) yields the expressions for far zone
electric field (Ref 12: 383):

e-J8r
E0 = Jjo=g— (Px cos P + Py sin 9) (2-8)

» -jgr
Ep = 88— cose (Py cos § - Px sin p) (2-9)

To develop the pattern equation, one must consider the geometry
illustrated in Figure 2-1. The geometry is assumed to be completely
symmetrical in the x direction. The aperture plane lies on the y axis

and extends from y toy In this situation, P = Tr/2. The feed

amin amax”
is an electric line source along the x_axis in the positive direction.

This results in an x directed aperture field given by Ea = X §(x) Eax(y).
Feeding this information into Eq (2-9) gives:

=BT ?amax 1, . jeylsine . 1
EP = ‘39'1? €0so f Eax(y') e J&Y dy (2-10)

yamin

1_:.1

1 vas executed using r* = yy".

where r.r

15
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:% Fig 2-1. Aperture

.}% When pattern calculations are made, the radial distance remains
)

\

‘{_ constant and terms involving it are eliminated along with other constant
- terms by normalization. The resulting for field pattern is given by:
3 ]
~ amax 1
R cose/ Eax(yl) eJBY sine 41

G(e) = Yamin (2-11)

. Y amax
N 1
oy max |cose f Eax(yl) eJ8Y sine 41

~ Yamin

.‘
$5)

When using aperture integration, one normally confines his attention to
Fat

‘:3 angles near boresight where cost will remain close to unity. Conse-
253

- quently, the final expression for pattern used in this work is:
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~ Y amax S
-'.:,‘ = f Eax(yl) eIBY” siné 4 1
Th '?'j'-_‘.‘ y . .
< 6(e) = —amin (2-12)
Y Yamax o1
5] max ] Eax(yl) eJBy sino dyl
& Yamin
5
"] Figure 2-2 shows Eq (2-12) applied to a uniform distribution over a
; 100 wavelength aperture. Figure 2-3 shows the results from a 10 wave-
% length aperture. Analytic integration results in:
R
= sin ( % sin o )
5 G(e) = o (2-13)
sin o
N 2
‘; For the 10 wavelength aperture, the first null occurs at sin e = 0.1
corresponding to © = 5.7 degrees.
Q In the preceding discussion, the aperture fields were assumed
3’ ) tangential to the aperture plane, that is the field vectors 1ie completely
‘:, in the plane. For non-uniform phase distributions, however, this is not
.
the case (Ref 10: 162). The direction of propogation of the reflected
'. wavefront is normal to the eikonal surfaces. Since in the geometrical
;"_' optics approximation the fields exhibit plane wave behavior, the H field
will not 1ie in the aperture plane for the x directed E field considered
";3 previously if the phase distribution varies over the aperture.
W)
.. If one considers the effect of non-uniform phase distributions, he
o
= must employ an alternative expression such as in Reference ten. The
», expression for far-zone electric field is (Ref 10: 161):
2 T e-JBr . - E. - - E - T -~ - jB;‘-Fl 1
X =gy rx[{nxE-[r-(sxE)n-(sxE)n-rle ds
':: \°$:;_",' (2-14)
) .
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: where

-\ AT - £ = plane aperture surface

.. = n = outward normal to :

é‘,‘, r = unit vector pointing from origin to field point

.;': ?1 = yector from origin to ds1 in aperture

-\ § = unit vector along ray ‘hrough aperture
) -‘5

% Eq (2-14) reduces to Eq (2-12) if the two dimensional assumptions are
S applied and the phase deviation from uniform are assumed small giving s
‘*i approximately equal to n (Ref 10: 162 ). Ignoring the phase error is not
\-,. really correct but is frequently done to simplify calculations; however,
N the results have primarily qualitative value (Ref 10: 173).
o
S:E Applebaum Weights and Patterns
1 One reason for using the simplified aperture integration formula is
S m its similarity to the summation expression found in array calculations.
‘ This suggests that one might use the Applebaum array weights as discrete
*~' points in an aperture distribution. Since the aperture integral is

;.__ analogous to the array summation, such a distribution should produce a
... similarly nulled pattern. This is in fact the case.
AN To i1lustrate this Eq (1-25) from Section I was applied with K = 201
:_, and d = 0.05 on a ten wavelength aperture. Figure 2-4 shows the aperture
3.'~' magnitude distribution and Figure 2-5 shows the phase distribution for
creating a null in Figure 2-3 at two degrees. Similarly Figures 2-6 and
:: 2-7 show aperture magnitude and phase respectively for a null at seven
degrees, while figures 2-8 and 2-9 correspond to a null at ten degrees.
::: Figures 2-10 through 2-12 show the patterns resulting from the appropriate
):5 .::::: distributions for two, seven, and ten degrees respectively.
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N

Further experimentation indicates that the phase distribution is the
dominant factor in determining null location. Figure 2-13 shows that

aperture integrating the phase distribution of Figure 2-5 with a uniform

04 Iy el

N amplitude distribution creates a null at 2.7 degrees. Similarly, Figures
2-7 and 2-9 integrated with uniform amplitude distributions yield nulls
at 6.7 degrees and 10.7 degrees as shown in Figures 2-14 and 2-15.

Implementing the amplitude distributions with flat phase does not con-

R A

sistently come as close. Such calculations result in nulls at 4.5, 6.3,
and 10.9 degrees for the three respective cases. Especially in the two

degree null case, the flat phase patterns do not deviate much from the

Rl €,
Aty & ce BN

quiescent pattern with nulls at 5.7 and 11.5 degrees as shown in Figures
2-16, 2-17, and 2-18. This implies that the phase distribution should

3% receive priority in any attempt to implement the aperture distributions

> shown in Figures 2-4 to 2-9. Using only the phase distribution, however,

results in an as yet undetermined error which deserves further study.
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II1 Secondary Pattern Calculation

Geometrical Optics

In order to approximate the field distribution in the aperture,
geometrical optics principles were applied to the reflector shapes in
question. The use of geometrical optics requires that the dimensions
of the scattering surface be large compared to a wavelength (Ref 12:454 ).
It also places a constraint on the smoothness of the surface, since the
radius of curvature of the surface must always be large compared to a
wavelength (Ref 9: 123 ). Even if these requirements are met, however,
the approximation is still rather crude. A1l diffraction effects have
been ignored. Thus, the reader should interpret the results qualitatively.
The null positions and the effect of reflector shape on them are the points
to watch.

Specialized to the two-dimensional case, the geometrical optics

expression for amplitude is (Ref 12: 450):

r
= S /___E!__ -

where lEol is the magnitude of the field at the reference location and

Few is the radius of curvature of the wavefront at the reference point.

The o denotes the distance from the reference point to the field point.
To include phase, one simply applies a phase factor determined by o.

The resultant expression is (Ref 12:451 ):

r . .
ol o Cﬁ . e"JBp e-]ﬂo (3_2)
CW.

E = |[E
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where g is simply 2r/A and ﬂo is the reference phase at the reference
point.

In order to compute the aperture field contribution of a single ray,
one must first determine the field radiated from the feed at the point of
impact for that ray on the reflector. In this work, the feed is assumed
to be a 1ine source at the origin. Placing the reference point one wave-

length from the feed and choosing |E°| =1, ﬂo = -g in Eq 3-2 yields:

E =1/Ti_p e-J8(1 + o) (3-4)

for the field phasor at the point of reflection. But 1 + p is simply

the distance from feed to reflection point, so letting 1 + p = r gives:

E = —Lo I8N (3-5)
VAb!
To calculate the field phasor in the aperture, one must compute 2 , the
distance from the reflection point to the point where the ray in question
= 1 == - -
intersects the aperture. Then using lEol ,/7;; and ﬂo Bry in Eq 3-2

gives:

-
E o= L/ I i (3-6)
\/Fi ow © T2

A11 that remains in finding ow’ the radius of curvature of the reflected

wavefront. This is given by (Ref 12:452 ):

1 1 2
2 = s Lt (3-7)
rCW ?‘1 Y‘c cos GO

where re is the physical radius of curvature of the reflector at the
reflection point and 9 is the angle of incidence of the incoming ray

with respect to the surface normal. If the surface is convex when
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viewed from the line source feed, r_ is greater than zero. If the

c
surface is concave, the re is less than zero. Thus, given a ray, Eq 3-6

determines the aperture field due to it.

Ray Tracing

Before one can compute the aperture field approximation, he must-
first trace given rays from the feed through their points of reflection
to their aperture intersection points. Figure 3-1 illustrates the
geometry. The 6 is the angle the incident ray makes with the horizontal
axis. The reflector surface is described by a discrete grid of equi-
spaced points.

The first step is to find the (xi, yi) impact point from 0, and the

grid. The line y = kx represents the incident ray in this two dimensional

geometry, where k tanei. To determine the impact point, one must define
a miss function (Ref 11:1449) g, = kx -y,. Testing each grid point will
yield same (xn-l’ yn-l) and (xnlyn) between which the miss function
changes sign, because 95-19p < 0. The impact point 1ies on the reflector
surface between these two points. This impact point is determined by
Ref 11:1449):

x; =y (1-F) + x_ .F

i n n-1 (3-8)

¥i = ¥,(1-F) +y _,F
where F = g /(gn'gnfl)‘

To determine the point of impact in the aperture plane, one must
consider Figure 3-2. The § and the ¥ are the angles made by the surface

normal and the reflected ray respectively with the horizontal axis.

Snell's Law at the impact point, valid for the smooth surfaces in question,
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Reflector Surface

X-AXIS

Fig 3-1. Incident Rays

dictates that the angle of incidence and angle of reflection with respect
to the surface normal be the same (Ref 11:1449), This angle is denoted
by 6 in Figure 3-2. Simple geometry then yields:

x=20-0 (3-9)

Determining P requires approximation of the first derivative of the
reflector surface at the impact point. Calculating it at (xn-l’yn-l)

and (xn,yn) by a well established finite difference formula, then using

~ 1inear interpolation to (xi,yi) yields aéceptable results. Once this

derivative is determined, @ can be found. The tangent unit vector to

the surface at (xi ,yi) is given by t = cosax + sina,;, where o is the
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angle made by E and the horizontal. The slope of the line determined

by t i{s tana and since this line is the tangent line to the curve at

CINAL

= 9y -
tana ax (3-10)

X=Xi

;{; where dy/dx|x=x1 was already discussed. The normal vector at (xi,yi) is

: n= di/da = sinax + c05a§. The slope of the line determined by the

o normal is tanf; hence, tan® = cosa/(-sina) = -cota which implies that
tana = -cotp., Substituting back into Eq 3-20 yields § in terms of a known
quantity (Ref 11:1449):

vere s N

g e
¥y

-cotp = &Y -
cotp = ¥ X = x, (3-11)
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One must consider some computational points before actually using

Eq 3-11 to find §. The range of P is limited to 0 < P < n. If
dy/dx|x=x; > 0, then § > "/,. If dy/dx|x=x; < 0, then p < "/,. The
case dy/dx|x=x,i = 0 implies that @ = 1'/2. Any scheme to compute 0
should reflect this. Since arctangent implementations on computers
generally range only from _-"/2 to "/2, one must exercise care in the

computation. A suitable scheme is Eq (3-12).

( U@ L, <o
i i
=J M dy -
¢'<T dx|x=x1. =0 (3-12)
-1 ,d ~1 d
\ T tan [('d%|x=x1.) ] ?&ix=xi >0

Using @ in Eq 3-9 gives ¥. From Figure 3-3, the point of intersection
of the reflected ray with the aperture (xa,O) is given by:

( T
X; = y;/tan ¢ X <3
=X -
Xy = X5 X =3 (3-13)
\  X; +yg/tan (n-¢) X > %

To compute the field contribution, one simply applies Eq 3-6 along
with Eq 3-7. The physical radius of curvature at (xi ,yi) of the reflector

surface is simply:

[t + (], V%2

X xex,)

I
dx X=X
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;q where the sign of the second derivative is preserved in order to make re
.':ﬁ,

Zj appropriately positive or negative based on convexity or concavity.

)

" The process of approximating the second derivative exhibits an
SAN

2: inherent instability which defied efforts at eliminating it. The effect
-

j§ of the instability will show up graphically in the spherical reflector
s example. Appendix B describes the problem.

X ‘Aperture Field

Ay

After defining an aperture, usually centered on the reflector's

fﬂ boresight and wide enough to include all reflected ray intersection
.._1:1 .

IE points, one selects a set of discrete points in the aperture at which
{f he wishes to compute the field. Taking each point in turn, one determines
f; ;xg? which rays intersect the aperture at that point and adds the field

P~ 43
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contributions of these rays. For most relatively smooth reflectors, only

one ray will strike the point in question.

To find the right ray, one steps through possible values of © until
he finds 9, and 8, such that Xa2 < X3 < X4g where Xa is the desired
aperture point. Then one computes X33 from ey = (e1 + ez)/2. Then one
uses a bisection algorithm to close in on the correct value of 6. If
Xy = %43 < 0, then the correct 6 is between 65 and 0,. If Xy = Xa3 > o,
then the ¢ is between <N and 63 The bisection process is then repeated.
When Xy = Xa3 is sufficiently close to zero, the process terminates.

When completed, the process yields a discrete grid of aperture field

points.

Parabolic Example

The scheme described before will now be tested on a parabola.
Figure 3-4 shows the parabola. Its diameter is 100X where X is the
wavelength. The focal length is 50A with focus at the origin. The feed
is an X directed electric line source at the origin. The aperture
electric field will also be ; directed, by application of Snells Law
(Ref 12:426 ).

Analyzing the parabol#, one notes that the phase will be constant
on an aperture centered on boresight and 100A» wide. Thus, the wave front
incident on this aperture is a plane wave. Since a plane wave has constant
amplitude, attenuation occurs only between the feed and the reflector.

Using this in Eq 3-6 yields:

= L (3-15)
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A little analytic geometry shows that ry = 501 + (1%6)2]' Normalizing
this to a unity maximum gives:

1

= 3-1
E mi—%_cﬂ—z (3-16)

Figure 3-5 shows the amplitude distribution generated by the method of

this section. The method duplicates the analytic geometrical optics

analysis. It also duplicates the constant phase, but the flat line

has not been plotted. Figure 3-6 shows the Section II pattern result.
Figures 3-7 through 3-9 correspond to Figures 3-4 through 3-6,

but with diameter 10A and focal length 5x. For such a reflector, the

validity of geometrical optics is questionable, since diffraction effects

are present. However, for angles near boresight, the pattern results

are still useful.

Spherical Example

4 'l,

Figure 3-10 shows the test surface. The radius of curvature is
200A. The diameter of the reflector is 100n. The feed is situated on the
boresight 501 from the center of the reflector and coincides with the
origin. The aperture is centered on a feed and is 100A wide to include all
rays.

Figures 3-11 and 3-12 show the amplitude and phase calculated by
the methods of this section with analytic determination of the second
derivative. Figures 3-13 and 3-14 shows the results using the final
second derivative approximation in Appendix B. While the phase result is
good, the amplitude exhibits a messy error distribution.

The net effect of the error is not overly drastic. The messy ampli-

tude distribution seems to cluster about the correct one. Also, phase is
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dominant in determining null location. A comparison of patterns is in

order. Figure 3-15 shows the pattern resulting from the analytic
derivative distribution. Figure 3-16 shows the pattern of the messy
distribution. The amplitude error has effected side-lobe levels and
null depths but not null locations. The side-lobe level and null depth
errors are noticeable, but not intolerable.

Figures 3-17 through 3-23 we correspond to Figures 3-10 through 3-16
for a spherical reflector with all the previously described dimensions
reduced by a factor of ten. Comparing Figures 3-22 and 3-23 shows that
null location has not been altered. Again, the effect of the amplitude
error is Timited to side-1obe level and null depth. Consequently, this
work will continue to employ the technique of this section, even though
the results are only qualitative, except for null location. Clearly,

future work must refine the second derivative approximation.
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gg IV Beamshaping

§" .
o Reflector Equation
i;j The simplest method for implementing a given antenna pattern applies
fgj geometrical optics to a known power pattern to get a reflector shape that
o generates the pattern (Ref 10: 497). The technique is crude, but might
:&g provide a first approximation (Ref 10: 497). If the reflector resulting
;Fs from the method is physically unrealizeable, one cannot however, simply
o call the pattern unrealizeable. The method is not that conclusive. The
rfi reader should also note that, because the method is based on geometrical
'éﬁ optics, only reflectors large compared to a wavelength should be considered.
.~% Assuming that the desired power pattern is P(y) between ¥, and yp,
255 one can generate a reflector as follows. Referring to figure 4-1 (Ref 10:
_?; 498), positive angles are clockwise from the horizontal and the distance
m from the feed point to the reflector surface for a given value of x is

% ‘ defined to be r(x). The x is the angle from horizontal to the incident
‘€§ ray, while y is the angle from horizontal to the reflected ray. The Y
_~' and Yo are the limits of the range over which one wished to specify P(y);
:; the pattern outside the range will be ignored, but the reader should be
;S aware that diffraction effects will yield non-zero field. The pattern

- level will fall quickly outside the specified range as long as the size
:;E of the reflector meets geometrical optics criteria (Ref 10: 497). The Xy
z; and Xo define the angular extent of the reflector. The geometry of figure
\: 4-1, coupled with the law of reflection, leads to the equation defining
ES the reflector contour (Ref 10: 498):

.

5; 1 dr X -y
- T (o (4-1)

N
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Before one can integrate Eq (4-1), he must first find the relation-

ship between y and x. This arises from power considerations. Geometrical
optics demands that the power in a given tube of rays must remain constant
(Ref 2: 404). Consequently, if no loss occurs at reflection, the power

in the incident ray tube must equal that in the reflected ray tube (Ref 10:
499). Defining the incident power pattern from the feed as I(x) and con-
sidering incident and reflected ray tubes with angular width dx and dy

respectively, energy conservation gives (Ref 10: 499):
I(x) dx = K P(y) dy (4-2)

where the K is a constant of proportionality. The fact that the total
power from the feed must equal the total reflected power determines the K

from (Ref 10: 499):

X2 2 '
jr I(u) du = K J[y P{v) dv (4-3)
X1 Y

To determine the relationship between y and x from Eq (4-2), one must
consider that the power in any feed range x; to x will equal the power in
some corresponding reflected range y; toy. Applying this information to

Eq (4-2) yields (Ref 10: 499):

X

y 1
[ P(u) du = 3 f I(v) dv (4-4)
y1 X1

Eq (4-4) defines y implicitly as a function of x. In order to simplify the
calculations, I(x) = 1 was assumed, implying an isotropic feed over the

range x; to x Using this in Eqs (4-3) and (4-4) gives a simpler expression

0
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for the right hand side of Eq (4-4):

E:.E ;-:';‘-: y X = X yz

i] P(u) du = 1 ][ P(v) dv (4-5)
- I X2- X1

b, 'y].

One can think of Eq (4-5) as defining g(y) = f(x). The y can be computed
from this as y = g~1(f(x)) which is y as a function of x. In general, y
must be found through interpolation of numerical data, since the analytic
integration of P(y) may not always be feasible.

To illustrate the use of this relationship, a simple exampie might

prove useful. If one defines P(y) = csc®(y) cos(y) then is follows that:

Y2
f P(u) du 1 - 1 =P. (4-6)

Y sin(y,) sin(yp)
‘!;' Similarly:
d 1 1
.ZZ P(u) du = :;;z;;; T o) (4-7)

Sticking Eqs(4-6) and (4-7) into Eq (4-5) yields an expression for y:

=1
1 X - X
y = sin"l || "Pr<5'f"l> (4-8)
s1n(y1) X9= Xy

This can be used in solving for r(x).

Eq (4-4) enables one to integrate Eq (4-1) directly. Doing so results
in an expression for the radial distance from the feed to the reflector

o surface for a given angle x (Ref 10: 499):
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Fig 4-1. Geometry for Beamshaping

du (4-9)

This leads directly to:

" Tu - y(u)
r(x) = r, exp tanl ——| du (4-10)
0 2

The ry is a scale factor which determines the absolute dimensions of the
reflector. In choosing ro» one must always remember that the contour

was derived from geometrical optics principles and one's confidence in it
should deteriorate as the size of the reflector decreases. Also, the
technique ignores any phase considerations and is crude. It is really best

applied to attempts to implement main-beam shapes, not patterns.

70




‘ A A0 P Pt R > -~ A NN A TN =~ . PRSI I B I I T R R A I
}'\

2

. Implementation

Y

a

-;E As stated earlier, an isotropic feed simplifies calculations, so this
4

j.': N was assumed. Therefore, Eq (4-5) applies. Furthermore, Xq and X, were
r <l
chosen as -60 degrees and +60 degrees respectively. This gives x2 - x1= 12¢°
and (x - xl)/(xz - x1) = (3x +m)/(2m). Given this, the computerized

J_ application of beamshaping is simple:

::E 1. Select Y1» y2 , and P(y).

- 2. Compute PY‘ = jJ P(u) du .

) 1

'~
B 3. Define f(x) = P (3x +w )/(2m).

N

X Y

‘ 4. Tabulate g(y) = f P(u) du for y, to ¥,

Y1

% 5. Compute y = g~1(f(x)) by interpolation whenever needed.

v

N
2 ﬁ 6. Tabulate \r'(x)/r'0 from Eq (4-10).

E 7. Compute r, from chosen reflector diameter and choice for Xq 0" X,
=

' 8. Scale r(x)/lr'o to get r(x).

"

p To illustrate beamshaping, a sin(x)/x example was computed. For this
= case, the expression for P(y) was:

L 2

. sin(ﬁz sin y)

: Ply) = (4-11)
> /]-L- sin y

A

2 where L was the diameter of the desired reflector, chosen to be 100 wave-
lengths. Figure 4-2 shows the result which is discernably parabolic.
foRn
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~ Pattern Null Attempt
.iSZ e In order to find a nulled P(y) to use in the method of this section,
%'a - the reader should refer to Egs (1-20) and (1-22). These equations define
r 9 the nulled pattern resulting from an Applebaum array of K elements. With
’:g uniform quiescent weighting, the quiescent pattern is a sin(Kx)/sin(x).
o

3 For a continuous aperture with a uniform distribution on it, the pattern
Sis is a sin(x)/x. One might form a loose connection between the two cases
OO

:ﬁf and use the Sa(x) = sin(x)/x in place of the sin(Kx)/sin(x) in equation
- (1-20) when trying to find a nulled pattern for the case of apertures.
Lﬁf Interpreting Kd as L and using Sa(x) instead of sin(Kx)/sin(x) in Eqs (1-20)
0

Dl and (1-22) yields:

.-..,

oy . 2

o P(y) = |Sa(P) - exp(jz) Sa(P;) Sa(z) (4-12)
o where

2 - L

o Ciia 9 [32 sin y

.‘; - L .

@? p; 07 sin y,

: B3

sin y - sin yj)

= ¥Yj= angular location of desired null
y .*I
fﬁg The reflector resulting from this is shown in figure 4-3. The reader will
e,
t@ note that the shape is the same as that for the sin(x)/x pattern shown in
e figure 4-2.
J_:.:
s The beamshaping technique cannot adequately cover the nulling case,
C A
lﬁ? because it ignores all phase considerations. Its primary application is in
Efi the synthesis of reflector shapes which will produce a given main-beam
.\;JQ
g:’: configuration, such as the csc-squared beam discussed earlier. Pursuing
e
-?i: it further is not recommended.
N
‘::-' "1"1:\‘:
3 74

R
o )
ma . Nan




----------------------------

E§§: V Suggested Extensions and Summary
(' e Refined Analysis
jE; Before one can refine the analysis technique given in this work, he
E_. must first solve, or at least circumvent, the second derivative instability
- described in Section III and Appendix B. A possible fix might be to alter
;:&Z the computational perspective used in the program in Appendix D. Instead
,ééi of calculating r. as an intermediate step, one might do better by finding
A Tew in one step:
o - r
: o 1+ 2 f"%Xi) ry (5-1
‘ ;3 where r. and ey 2re the physical radius of curvature of the reflector at
3;2 xj and the radius of curvature of the reflected wavefront respectively.
2%f GEZ’ The r is the distance from the feed to the reflection point (xi,yi) and
":35 d is the angle of reflection with respect to the surface normal. Such a
»ibﬁ computational trick might smooth the results. The idea is due to Capt.
éé} Thomas Johnson, who was teaching at the Air Force Institute of Technology
j??é at the time of this writing.
i’;; Given that one finds a workable fix, he might seek an analysis tech-
:ﬂ? nique which more faithfully reflects the actual fields and patterns. Much
.Eﬁz of the work discussed previously involved reflectors ten wavelengths across.
?ZE One can justifiable question the accuracy of geometrical optics alone in
%ﬂf such a case, since diffraction effects should be quite noticeable. Fig 3-18
ﬁ;; shows a discontinuous aperture field which is common in a geometrical
?i?; optics analysis. At ten wavelengths, however, one expects the field to
jﬁ; :ljlf vary much more smoothly. Generating the aperture field distribution with
e T
=3
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b Fig 5-1. Simple GTD Geometry

R a simple geometrical theory of diffraction (GTD) approach will do much for
jﬂ this problem. Such a technique could also be used to compute the far-field
-\.

- pattern; however, a GTD generated aperture field coupled with aperture

o5 integration would be more instructive in the nulling probiem.
f .‘_:

Sj- Figure 5-1 shows the simplest GTD model for the problem under consider-
e

= ation here. The total field at a point on the aperture is the sum of the
:E; contributions from all reflected rays and the two rays singly-diffracted

jil from the edges (Ref 12: 484). The reflected rays are found by the methods
g of Section III. The calculation of the diffracted fields is discussed
ha

;QQ elsewhere (Ref 12: 458-477); a straightforward method specialized to the

i\.l

ﬂg problem at hand can be found in Appendix C for the reader's convenience.

-:}’

= Higher order effects decrease in significance with increasing reflector
,*: tii} size, inclusion of these is a discretionary matter.
o X
o 76
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Fig 5-2. Galindo Dual Reflector

Suggestion for Implementing Distributions

The most promising technique for implementing the distributions of
Section Il is due to Galindo (Ref 2). The method employs the principles
of geometrical optics to implement arbitrarily specified aperture amplitude
and phase distributions with a dual reflector geometry as shown in figure
5-2 (Ref 2: 404). The problem eventually reduces to the numerical solution
of a coupled pair of first order, non-linear, ordinary differential equations
(Ref 2: 404). The development is intricate and the interested reader
should look to Reference 2 for an explanation of the method. This method
is designed for dual reflectors 1ike that in figure 5-2; however, one
might be able to apply the principles behind the analysis to a single
reflector and develop a similar method, one that considers phase. Reference

8 presents a method based on Galindo's but computationally simpler; however,
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its application to single reflectors does not look too promising.

Summary

Aperture integration provides a viable technique for considering
pattern nulling with reflector antennas. It is directly analogous to
the summation of element field contributions found in antenna array
calculations. Consequently, the array weights given by Applebaum's
adaptive array formulation can be used as discrete points in a continuous
aperture distribution. Section Il illustrated how these distributions
resulted in nulled patterns.

In analyzing large reflectors with non-traditional contours, geometrical
optics is quite useful. The usefulness of the method presented in Section
ITI, however, is limited by the numerical instability of the second deriv-
ative approximation. The reader will note that the method performed better
on the ten wavelength case than on the one hundred wavelength cases from
a numerical standpoint. This improvement results from using the same
number of discrete points in the ten wavelength cases as were used in the
hundred wavelength cases, giving a smaller step size for the reflector
grid. Unfortunately, as in most numerical analysis problems, further
reducing the step size does not always give better results. Increasing
the number of grid points in the ten wavelength examples in Section III
in order to shrink the step size actually makes the problem worse. The
fix given at the beginning of this section seems the best candidate for
a solution. Given that the numerical problem can be removed, the ray-
tracing/geometrical optics analysis could be useful in furcher work.
Coupling it with a formulation of geometrical theory of diffraction can
make it even more useful.

The beamshaping method presented in Section IV is already well known.

It is easy to implement, but too simplistic for the problem under consideration.




X The results are unacceptable when applied to pattern nulling, possibly
_i because all phase considerations are ignored. The method was originally
jf éfgf designed to synthesize main-beam shapes and is out of its depth in the
T B nulling problem. Galindo's method should provide a good baseline for

further studies. Other methods for dual off-set reflectors, also based

on geometrical optics, may also prove useful.
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(3' = Appendix A: Applebaum Control Equation Verification
t-..l
S
;; Verifying the Applebaum control equation demands that one first find
ﬁﬁ an expression for the signal-to-noise ratio and then show that the control
o law weights in fact maximize the S/N. As a first step, one computes the
'4.\
“
‘iq outputs Vg and Vi (Ref 1: 586):
>
: (A-1)
~ v Sal W.S. A-1
A ‘
A
O = -
3 o T I (A-2)
o
i4§ If one defines weight vector W =[w; . . . w ]T and noise vector
3N 1 k
)
w ‘jﬁ? N = [n1 SN ni]T (Ref 1: 590) along with the signal vector defined

in Section I, he can simplify the expressions:

T

i L P :
- AT I

- Vg T aW's (A-3)
- v. o= WN (A-4)
N0 n

oS

% . . . . . .

N The next step in determining the signal-to-noise ratio is computing
~ the noise power in the output. This is given by (Ref 1: 586 ):

-,_.:

o

N P = Ellv |4

e

-,

ey = E[v *v]

- n'n

v

o = € [(N)*(WTN)] (A-5)

SO

A
LY I
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Noting in Eq (A-5) that WN = N'W, one can further write ( Ref 1:586 ):

P, = (W )*EN*NT W (A-6)

However, E[N*NT] = M, the noise covariance matrix ( Ref 1:586 ). This

leads to the following equation for noise power:
p = T
p = (WM (A-7)

The matrix M is Hermitian and positive definite, so it can be
diagonalized by a coordinate transformation (Ref 1: 586). If one calls
the transformation matrix A, the signal and noise vectors in the trans-

formed coordinates become:

AS (A-8)

W
n

AN (A-9)

=
i

To compute Pn under this transformation, one proceeds as follows:
v. = WN (A-10)
Substituting Eq (A-9) into Eq (A-10) results in:

A

WAN

<
fi

(AT) TN (A-11)
Comparing Eq (A-11) with Eq (A-4) implies (Ref 1: 587 ):
Wo= AW (A-12)

Employing the transformed vectors gives noise power as (Ref 1: 587 ):
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o P = (W )*E[NANT I (A-13)

But matrix A decorrelates the noise components and equalizes the power of

each (Ref 1: 587 ). The M can be written (Ref 1: 587 ):

M o= E[NN] = P I (A-14)
Choose P = 1 and M = I,. Thus, Eq (A-13) becomes (Ref 1: 587 ):

P = (W)™ (A-15)

o 3

Substituting Eq (A-12) into Eq (A-7) gives:

P = (W )rAsMATH (A-16)

Comparing with Eq (A-15) indicates (Ref 1: 587 ):

AMMAT = I (A-17)

M = (ATA%)"L (A-18)

To verify the control law, one starts with the optimum weight vector

for a system with equal and uncorrelated noise components (Ref 1: 587 ):

ﬁo N (A-19)

where u is arbitrary.

Under the transformation, Ve is given by (Ref 1: 587 ):

v T W's (A-20)

Applying the Schwarz Inequality to Eq (A-20) yields:

vel2 < lal 2L N0 ET)#E) (A-21)
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o Substituting Eq (A-15) into Eq (A-21) shows that:
’.:: ).:,.
AR p

( 7 < laf?EN)s] (A-22)
n n

;::I This determines an upper bound for signal-to-noise ratio. If one shows
o that Eq (A-19) produces this upper bound, then he demonstrates the Eq
e (A-19) is optimal (Ref 1: 587 ).

:: Putting Eq (A-19) into Eq (A-20) enables one to compute the signal
: power out Ref 1: 587 ):
_ 2

$: Ps - Ivsl

2

. = Jau(§T)*$)?

o 2, (2 aTy 202

N = |a|“|u|“[(s")*s] (A-23)
N
0 G .0 . o,
< The noise power comes from replacing W in Eq (A-15) with wo in Eq (A-19)
N

- (Ref 1: 587 ):
3

"y _ AT ~

‘ P (W' )*W

N o

:._ = w(ST)%s

& o T s
~ = Jul®0(sHs] (A-24)
o Dividing Eq (A-23) by Eq (A-24) leads to:
Ps 20 (2Tyad

i = = |a|°[(5))*S] (A-25)
> n

Dy

N Consequently, Eq (A-19) is optimal. However, the untransformed array

, . weights are needed, not the transformed weights W.
M

<
W,

Cal
")

X
3,
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Substituting Eq (A-19) into Eq (A-12) gives an expression for the
actual weights (Ref 1: 587 ):

TA
5 , = AW

E
[}

AT(pg*)

N T

< = pA ARS* (A~26)
% :

MY

iy One can infer from Eq (A-18) that Ml = ATA* so that Eq (A-26) becomes
(Ref 1: 587 ):

W= Ml

o S* (A-27)

This verifies the Applebaum control law to be:

A AAA

Y YTeh

MWO = uS* (A~-28)
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{ =~ Appendix B: Second Derivative Approximation

b

i%% The error in the amplitude distribution revealed by the spherical
2 reflector example in Section III arises directly from inaccuracies in the

. approximate computation of the second derivative at the impact point on
é? the reflector surface. The errors in amplitude are severe because the

'§$ radius of curvature of the reflector depends on the second derivative.
. The equation for the surface of Figure 3-10 is:

e

%E f(x) = RE - x% - h, (B-1)
<,

where R = 200, h_ = 150. The second derivative is:

v 2

Y ) s - — _sz)a/z (8-2)

@ .

On -50 < x < 50, the second derivative is bounded by -0.00551 < f"(x) <
-0.005; so f"(x) is always small in magnitude. Since f"(x) is in the

denominator of the expression for the radius of curvature, small errors

. it

ig in f" can generate wild variations in re: The results in significant
;ﬁi error in the wavefront radius of curvature calculated from Eq (3-7).
: This is the root source of the amplitude error.
%ﬁ Unfortunately, as stated on page 205 of Reference 3,"the process of
;i differentiating is basically an unstable process.f The following
i formulas were used (Ref 3: 206 ):
AU
2
. fy-2f +f
-;: f! = 1 o -1, terms of order h2 (B-3a)
o 0 h
1. .
v f:::.::.
-‘\ -
<
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-f, + 16f, - 30f_ + 16f , -f
- 2 1 o =l =2 4 terms of order h* (B-3b)
0 2
12h
f1-fa
fo = ——F— applied twice (B-3c)

Eqs (B-3a) and (B-3b) yielded meaningless results, while B-3c produced
data that clustered around the distribution found from using Eq (B-2) to
compute the second derivative.

Experimenting with double precision arithmetic might generate better
results; however, this will probably not solve the problem in general. In
the most general case, the reflector will be the result of some other
numerical algorithm. Employing double precision will most Tikely yield
only a long string of meaningless digits, since one cannot know the
reflector surface to arbitrary precision. A simple experiment conducted
in the course of this work showed no difference between single and double
precision amplitude re§u1ts for the 10-wavelength spherical reflector. In
this experiment, the second derivative was calculated with double precision,
but the numerator differences in the difference quotients of Eq (B-3c)
resulted from single precision arithmetic. This reflected that, in general,
one cannot know f_1 and f1 to arbitrary precision. Since no improvement
followed from this, one must conclude that errors in the numerator difference,
magnified through division by the small h?, produce the error. Only if
algorithms which generate the reflectgr grid can supply very great precision,

will double precision arithmetic prove useful.

86




&
s
- Appendix C: Diffracted Rays
::: _\:_\
RN . . . .
~ The edge diffracted field is given by (Ref 12: 472):
X
> Eq(s) = - D E; A(s) exp(-aﬁs) (c-1)
N
i where
3:3 s = distance from diffraction point to observation point.
( E;= incident field phasor at diffraction point.
= A(s)= 1/ s (Spatial Attenuation Factor).
2N D = diffraction coefficient.
. The s is computed by simple analytic geometry, since the points of diff-
( raction and observation are both known. For isotropic feed, the E1-=
exp(-jﬁrl)/w/rl where rj is the distance from feed to diffraction
N point.
Lo
$ Calculation of D is somewhat more involved. Figure C-1 shows the
' geometry. Naturally, the diffracted ray in question is the one which
.‘ ﬁ intersects the aperture point under consideration. The angle @ must be
:i computed based on the location of the aperture point with respect to the
:: point of diffraction. The @', however, depends only on the feed location
2 and the edge location. The angles are measured with respect to the
, tangent line to the curve at the edge. Once the angles have been determ-
-y ined, one should compute (Ref 12: 473-475):
:Ef; sy
- L = (C-2a)
- s + r‘l
" +_ T+ (@+0")
X Nt =
o~ + rounded (C-2b)
4T
"\
2
+ m+ (9 -9')
N_ = rounded (C-2¢)
: 47T
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=
+ 1

[

-
o
| =
3
Q.
o0
a

(C-2d)

' - -nm+(p-9")
p N = - rounded (C-2e)
% 4

3H The N's are integers found by rounding the given expressions to the
nearest integer (Ref 12: 475). They are in turn used to compute (Ref 12:
iﬁi 474):

+ '
at(@ + 9') = 2 cos? [4"N+ 6 +0 )] (C-3a)

9 +9")]
I 2 i

o 4TINS
. a~(p+9') = 2 cos2 *

(C-3b)

®-90)]

- - +
@ at(g - 8') 2 cos? | 21N

""\. . L 2 ol

(C-3c)

. (0 -0') = 2 cos? 4Nz - (9 - 0°)

s . 2 ]

(C-3d)

-"'.' Defining the following is helpful (Ref 12: 474):

" Q = -exp(-jTI/4)/(4y/2mp ) (C-4a)

cot [T+ (g -9')] (C-4b)

Pl
..
-
~
—
1]

: Ky= cot [TT-(p-p")] (c-4c)

ky = cot [T+ (g *m] (c-4d)




wh

..
‘2%

Also, F(X) as follows is needed (Ref 12: 474):
00

F(X) = j2 I'\/.X-lexp(jx) ‘lexp(-jtz) dt (C-5)

With all the preceeding definitions, one can calculate the diffraction

coefficient (Ref 12: 474):

0 = Q [K F(BLa*D - 0) + K F(BLa"(0 - 9"))
- Ky F(RL (B +8) + Ky F(BL @ +9'))] (C-6)

The reader should note that Eq (C-6) applies only to the problem at
hand, a straight edge with an incident field parallel to the edge. The
reader should consult Reference 12 and available literature for any

other problems.
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Appendix D: Programs

This appendix contains pPrograms used in this work. The language is

77 standard Fortran. The purpose of each program or subroutine is noted
in the listings themselves.
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X tee 1 00:21 19837 apeviura2 Page

o
A I
R
% ‘QQ; Subroutine AFTFLI(RZZNGRID. "I, YA RAYS, Eo YT A NG ™)
: X

" k3 APTELD is the controlling routine for the =av Sraciiog
h% b method and will calculate an approximate aperture field.
0 X
R X RZ is the grid of reflector points, given as distance above
. X the aperture plane,
* .

"~ x NGRID is the number of grid points.
o x
64 ¥ TI and YA are working arrays., The NRAYS should he chosen QJ
R X some appreciable fraction of NGRID, say 1/4.
b X »
f‘ X EA is the array of approximate aperture field valus=z anu
.1 x YEA is the array of aperture points, The NAF is %he numben
b X of aperture points,
Ry E
S B Inputs? RZ,NGRID,NRAYE,NA
X X
® Real RZ(NGHID) »TI(NRAYS),YA(NRAYS,5), Y A(NAF)

_ Complex EA(NAFP)
Xt Common /BOUNDS/ RFYMIN,RFYMAX,YEAMIN,YEAMAX

0 Common /CNSTNT/ PI,BETA

o HG = (RFYMAX - RFYMIN)/FLOAT(NGRID-1)

A HA = (YEAMAX - YEAMIN) /FLOAT(NAP-1)

@ o 1 I=1,NAP

- . YEA(I) = YEAMIN + HAXFLOAT(I-1)

N EA(I) = (0.0, 0.0)

- 1 Continue
N TMIN = ATAN(RZ(NGRID)/RFYMAX)
ke TMAX = PI -~ ATANC(ABS(RZ(1)/RFYMIN))

DT = (TMAX - TMIN)/FLOAT(NRAYS-1)

. Do 2 I=1,NRAYS
LY TICI) = TMIN + DTXFLOAT(I-1)

" Call TRACE(HG,RFYMIN,RZ,NGRID,TI(I),
;. 1 YACI 1)y YALTs2) s YACT ,3) 5 YACTI,4) » YA 3y YALT 40
< 2 Continue
- Do 7 I=1,NAP
" @ = YEACI) - YA(l,1)

) If(ABS(Q).LT.1.0E-4)then

b Call FIELD(YA(1,1),YAC1,2),YAC(L1,3)sYA(L1,4),YA(L1,5),YA(1,58),
s 1 EACI))

N Endif
= Do 6 K=2,NRAYS

QQ = YEA(I) - YA(K,1)

> I1f(ABS(QQ) .LT.1.,0E~-4)then

~y Call FIELD(YA(K,1),YA(K,2) ,YA(K»3) ,YAIK,4) s YA(R,9) » YAIK, &)
' 1 EACI))
N Go ta 5

1 &
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03 Endif

X2 IFCCABS(Q) LT, 1, 0E=4) ,Qit. (ARS{DQ) LTV 2, 35 =4230) g 3
- IF{@%QG GT. 0.0)G0 tu 5

TLOW = TI(K=-1)

*ﬁ} THIH = TT(K)
e £ = @
*::i A GG = G&
3 S N

¥

L
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3y

3 Do 3 JJ=1,100
bt : ™ = (TLOW + THIH)/2.0
0. Call TRACE(HG,RFYMIN,RZ,NGRID,TMyYAFT,YT,ZI,THR,OZNY,D2Z0Y2
e QQG = YEA(I) - YAPT
_ 1f(ABS(QOAQ) .LT. 1,0E-4) Go to 4
A If(Q1XQR8 .GT, 0.0)then
- TLOW = TM
o A1 = QaaQ
\ Endif
R If(RRAOXAA1 .GT. 0.0)then
e THIH = TM
%@ QR1 = Q6Q
W Endif
Y 3 Continue
} 4 Call FIELD(YAPT,YI,ZY,THR,DZDY,D2ZDY2,EACI))
. . 5 Q = Aa

. @ 6 Continue
¥ 7 Continue
)r Return

N End
‘v .
’ﬁ' Subroutine TRhCE(H'Y"IN,ZpNGrTHETﬂ'YhPTpYIpZIyTHR,DZI’Y,UQZI‘YZ)

, x

v X TRACE does the actual ray tracing for given incident ray
o * angle with the horizontal.
» N 3
T X H is the reflector grid spacing and YMIN is the lowest

i X point on the aperture.

X

oo X Z is the reflector grid with size NG.

) x

3% X THETA is the angle that the incident ray makes with the
}3 X horizontal, measured counter-clockwise positive.

X *
o X YAPT is the intersection point of the reflected ray with
}1% x the aperture plane.
'.'I} *
e X YI and ZI1 specify the impact point of the incident ray,
Q}“ X THR, DZDY, D2ZDY2 are the angle of reflection with respect
A

~
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derivative respectivelv.

Inputst H,YMIN,Z,NG,THETA

I 2% % W%

Real ZING).Y

Cammon AJONSTRT/ #1.22TA

IFCARS(THE TS - +1/2.0) L7, 1.Gw=3)van
YT = Q.Q
Z1 = Z((NG~1)/241)
Call DERV(ING-1)/2431yZyNGyH,0ZIY,0220Y2)
Call BOUNCE(YI,ZI,DZDY,THETA,THR,YAFT)
Return

Endif

. K = TANC(THETA)
YNM1 = YMIN
GNM1 = KXYMIN - Z(1)

E2c 1 00201 1983 aperture Page 2

IF(ABS(GNM1) .LT. 1.0E-4) then
YI = YMIN
21 = 2(1)
Call DERV(1,Z,NG,H,DZDY,D2ZDY2)
Call BOUNCE(YI,ZI,DZDY,THETA, THR,YAPT)
Return
Endif
Do S N=2,NG
YN = YNM1 + H
GN = KXYN -~ Z(N)
If(ABS(GN) .LT. 1.0E-4) then
YI = YN
Z1 = Z(N)
Call DERV(N,ZyNG,H,DZDY,D2ZD1Y2)
Call BOUNCE(YI,Z1,DZDY,THETA,THR,YAFT)
Return
Endif
If(GNM1%XGN .BT. 0.0) Go to 4
F = GN/(GN - OGNM1)
YI = YNRX(1,0 = F) + FXYNM1
2ZI = Z(NIR(1,0 - F) + FRZ(N-1)
Call DERV(N=-1,Z,NG,H,DZNM1,D2ZNM1)
Call DERV(N,Z,NG,H,DZDYN,D2ZN)
DY = YI - YNM1
DZDY = DZNM1 + D2ZNM1xXDY
B2ZDY2 = D2ZNM1 + (D2ZN - D2ZNM1)XNY/H
Call BOUNCE(YI,ZI,DZDY,THETA, THR,YAPT)
Return
4 YNM1 = YN
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S Continue

~
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End

Subroutine BOUNCF(YI,ZI.DZUY,THETA. YR, YART?

POUNCD serves TRAD:. The (LaZT Tk a7y

Cammon SCNBTHNTS T e35Th
IF(ARS(DIZDYY LT+ 1.0E-%5) then
PHI = P1/2.0
Go to 1
Endif
If(DZDY .LT. 0.0) then
PHI = ATAN(1.0/ABS(DZDY))
Go to 1 . '
Endif
PHI = PI - ATAN(1.0/D2DY)
PSI = 2,0%PHI - THETA
THR = ARS(PHI - THETA)
If{ABS(PSI - FI/2.0) ,LT., 1.0E-4) then
YAFT = YI
Return
Endif
If(PST LT, FI/2.0) %hen
YAPT = YI - ZI/TAN(PSI)
Return

1 00:01 1983 aqperture Page 4

Endif

YAPT = YI + ZI/TAN(PI-PSI)
Return

End

Subroutine FIELD(YAPT,YI,ZI,THR.DZUY,D2ZDY2,EAPER

A

FIELD calculates the contribution of the reflected ray

to the aperture field.

YAPT,Y1,ZI,THR,DZNY,N2ZNY2 are inputs, They are the

intersection of reflected ray with aperture, impact
point, angle of reflection with respect to surface
normal at impact point, and first and second derivatives

at impact point respectively.
Complex EAPER

Real L
Common /CNSTNT/ PI,BETA
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A

= L - b DRI TR T v - v R TEIEN

BY = Y&FT - YI

RHO = SQRT(YIXYI + ZixZI)
RHNDA = SQRT(ZIXZI + DYXDY)
L = RHO + RHOA

FHI = -BETﬁ#L

3 = LLO/BGRTIRHD)

v e ARSRIZIVD) LT, 1.08-6)%hen
(@,‘; A = AXSART(KHO/ (KHD + AHOA))
Go to 1
Endif

RC = (1,0 + DZIDYXDZIY)%¥X1.5/D2ZNDY2
W = ABS(1.0/RHO + 2.0/ (RCXCOS{(THR)))
If(w .LT. 1,0E-5)Go to 1
RCW = 1.,0/W
If¢D22DY2 .GT.
I£(D2ZDY2 .LT.
IF(ABS(RCW - RHOA)
IFf(RHOA .LT.
IFf(RHOA .GT. RCW) then
A = AXSART(RCW/(RHOA - RCW))
PHI = PHI + PI/2.0
Endif
Endif
1 EAFER = EAPER + AXCEXF(CMPLX(0,0,FP4I))
Return
End

0.0) then

Subroutine DERV(N,Z'NG!HyDZDYyDZZDYZ)

differentiation formulas,

8
I X E X XN E X ]

Real Z(NG)

Dec 1 00:01 1983 aperture Page S

If(N .EQ., 1) then
DZDY = FR2(Z(N)»Z{(N+1)9Z(N+2),H)

DZDYY = C2¢(Z(N)»Z{(N+2),H)
DZDY2 = C2(Z(N+1),Z(N+3)sH)
D2ZDY2 = FR2(DZDY,DZDY1,DZDY2,H)
Return
Endif
If{N +EQ. NG) then
DZDY = FR2(=Z(N) y=Z(N-1),=Z(N=-2),H)

9

[

oL Te 1.0E-95)Go to 1
RCW) A = AXSART(RCW/(RCW - RHOA))

.....

0.0) A = AXSAGRT(RCW/(RCW + RHOA))

DERV simply approximates the derivatives of the reflector
grid at grid points using established numerical

N is the poaint in question, while Z is the reflector grid
NG is its dimension. H is the spacing.
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[d
; DZDYML = CZ(Z(N“?)‘Z(N)pH)
Al DZDYM2 = C2(Z(N=3)yZ(N=-1)4H)
D22DY2 =3 FR2(=DLZLY,=DZUYMI,-UZDYH7,H)
o Return
% Endif
b ! TAOAN 2R, 2). CF\»\N A R R At
¥l ‘.3: WZDY = CR2IT(N=LZ{Men) ks
N W& IFI(N .29, 2)then

pZnyM1 = F

AR AR Ay,

pZnvyl = C2(ZIN) ,Z(N+2D
D2ZDY2 = C2<(DZDYM1,DZDY1,H)
Else If(N .EQ., NG-1)then
DZDYM1 = C2(Z{(N-2),yZ(N),H)
DZDY1 = FR2(=Z(N+1),~Z(N),=Z(N-1),H)

D2ZDY2 = C2(DZDYM1,DZDY1,H)

b Endif

i~ Return

Py Endif

R DZDY = C2(Z(N—-1),Z{(N+1)
X DZDYM1 = C2(Z(N-2),Z(N)

o H)
o H)

DZDY1 = C2(Z(N)»Z(N+2),H)

13 Return
A End

Function FR2(X0,X1 p X2 HD

D2ZDY2 = C2(DZDYM1,DZDY1,H)

R2UZIN=L) 3 ZIN) »Z{N+1L) yH)
p

FR2 = (~3,0%X0 + 4,0%X1 ~ X2)/(2.0%H)

! Return
B ’ End

; Function C2(XM1,X1,H)
- C2 = (X1 -~ XM1)/¢(2.0%H)

@ Return
End

..’ X Fy e
ol a see L & [

A,

R

LY
VN?
'

o

AT IENTOT AT

RSP

Y P

RN

'-\'-"-\\.\.

“_l.nnu

NN

LOAGRRR

At e

LR R AR A

S BN

.-\-.'0‘-'- N

'1



Dec 1 00:09 21983 integrate Fage 1

Aubrouting AR TINTIE P X MA G, "= Ta Mo I, Y@L " TR TR Y

AFTINT computer the far Field Ffoar o g wan aneriurs
distribution,

E and P are the amplitude and phase respectively of the
aperture distribution, Input

X is a complex scratch array.
NA is the dimension of the E,P,X.
F is the pattern that results.

THETA is the angle from boresight associated with the
carresponding F value.

YMIN and YMAX are the dimensions of the anerture.

TMIN and TMAX give the range of anglz for which the pottary
will be calculated,

e W I W W I W I I W I W W I W W IE €

Real E(NA) yP(NA),F(NP) ,THETA(NF) y MAX
Complex X(NA),Q
Common /PIBETA/ PI,BETA
H = (YMAX = YMIN)/FLOAT(NA-1)
DTHETA = (TMAX - TMIN)/FLOATI(NP-1)
Do 2 I=1,NP
THETACI) = TMIN + DTHETAXFLOAT(I-1)
STH = SIN(THETAC(I))
lo 1 J=1,NA
Y = YMIN + HXFLOAT(¢(J-1)
X(J) = ECIIXCEXFP(CMPLX(O.0,BETAXYXSTH + P())
1 Continue
Call SRL(X,NA,YMIN,YMAX,Q)
F(I) = CABS(Q)
2 Continue
MaX = F(1)
o 3 I=1,NP
IFCF(I) +GT. MAXIMAX = F(I)
3 Continue
Do 4 I=1,NP
F(I) = F(I)/MAX
THETACI) = THETAC(I)X(180.0/PI) ;
4 Continue |
Return
End b

Subroutine SRL(F,N,XMIN,XMAX,Q)
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] X 3impacn’s Nule integration rontine aseociated with ATLAY.

) Complex F(N),Q
(8 H = (XMAX -~ XMINY/FLOAT(N=-1)
94 b= N - 2 ' :
TELCIN=L) /232 o NE, (N=1¥Y. = 1 - 3

% Dec 1 00:0% 1983 integrate Page 2

st Q= (0,0,0.0)
5-') Do 1 I=1,L,2
‘ ' Q=0 + (F(I) + 4,0%F(I+1) + F(I+2))

Ay 1 Continue

Q = H¥G/3.0
) IfF(L +ER. N-2)Return

- Q= Q0 +F Z.0KHR(F(N=-3)+Z.0KF(N-2)+3 . 0%F (M=1)+F (M) /8,0

by Return
"6:'& End \

&
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N Frogram CNVRT

This oregram converts the rho versus asi data Fron e
beaamshaping formulas into a equi-spacea -y Fformat.

W ¥ < W

' . Real RHO(--dimension of rho--),PSI(--dimension of psi--)

b Open(i,File=‘name of input file’)

- Open(2,File=‘name of output file’)

‘ NP = —=pumber of input dato points--
NG = —=number of ocutput data points--

. YMIN = —=lower limit of aperture--

by, YMAX = --ypper limit of qperture--

] HG = (YMAX - YMIN)/FLOAT(NG-1)

), Rewind 1
Do 100 K=1,NP

3 Read(1,5) FSI(K),RHO(K)

e 100 Continue

H Lo &6 I=1,NG

¥ Y = YMIN + HGAFLOAT(I-1)

by Q@ = Y - RHOC1)XSIN(PSI(1))

IfF(ABRS(Q) .LT. 1,0E~-3S)then

. P = PSI(1)
o R = RHO(1)

: Go to 4

3 : Endif

A Do 3 J=2,NP

: ~ Q8 = Y - RHOCJIKSINIFSICI))

i o If(ABS(QAG) ..LT. 1.0E-5)then

: P = FSI(D)

2 R = RHO(J)

‘h Go to 4

: Endif

h IF(Q%XR8 .GT., C.0)6o to 2

- DRDP = (RHO(J) = RHO(J-1))/(PSI(J) - PSI(J-1))
[ 1 = Q

" G2 = 0Q

18 P1 = PSI(J-1)

o P2 = PSIC))
- 1 P = (P1 + P2)/2.0

R = RHO(J~1) + DRIPX(F - PSI(J-1))

>, X = Y - RXSIN(P)

Y If(ABS(X) LT, 1,0E-5)Go to 4

N If(A1xX .BT. 0.0)then
N a1 = X
k. _ P1L = P

, ' _ Go to 1

S Endif

Q2 = X

\ P2 = P

&. Go ta 1

-
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Q= QR

‘.} , : b
.\ 3 Continue

« v . "
Bailoat 4 Z = RKCOS(E)
o Urite(2,9) Y,2Z
x 5 Forwat(2F12.5)
100 £ Lortinue

‘o
‘.9 3
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A
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-

Stop
End
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